Building a machine learning model is an iterative process. For a successful deployment, most of the steps are repeated several times to achieve optimal results. The model must be maintained after deployment and adapted to changing environment. Let’s look at the details of the lifecycle of a machine learning model.
This article presents a high-level overview of the various phases of an end-to-end ML lifecycle, which helps frame our discussion around security, compliance, and operationalization of ML best practices which will be useful in our later blog posts.